Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.335
Filtrar
1.
Glob Chang Biol ; 30(4): e17283, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38663017

RESUMO

Stratospheric ozone, which has been depleted in recent decades by the release of anthropogenic gases, is critical for shielding the biosphere against ultraviolet-B (UV-B) radiation. Although the ozone layer is expected to recover before the end of the 21st century, a hole over Antarctica continues to appear each year. Ozone depletion usually peaks between September and October, when fortunately, most Antarctic terrestrial vegetation and soil biota is frozen, dormant and protected under snow cover. Similarly, much marine life is protected by sea ice cover. The ozone hole used to close before the onset of Antarctic summer, meaning that most biota were not exposed to severe springtime UV-B fluxes. However, in recent years, ozone depletion has persisted into December, which marks the beginning of austral summer. Early summertime ozone depletion is concerning: high incident UV-B radiation coincident with snowmelt and emergence of vegetation will mean biota is more exposed. The start of summer is also peak breeding season for many animals, thus extreme UV-B exposure (UV index up to 14) may come at a vulnerable time in their life cycle. Climate change, including changing wind patterns and strength, and particularly declining sea ice, are likely to compound UV-B exposure of Antarctic organisms, through earlier ice and snowmelt, heatwaves and droughts. Antarctic field research conducted decades ago tended to study UV impacts in isolation and more research that considers multiple climate impacts, and the true magnitude and timing of current UV increases is needed.


Assuntos
Biota , Mudança Climática , Camada de Gelo , Perda de Ozônio , Neve , Regiões Antárticas , Animais , Raios Ultravioleta , Estações do Ano , Ozônio Estratosférico/análise
2.
Sci Total Environ ; : 172591, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663597

RESUMO

With the issue of ozone (O3) pollution having increasingly gained visibility and prominence in China, the Chinese government explored various policies to mitigate O3 pollution. In some provinces and cities, diurnal regulations of O3 precursor were implemented, such as shifting O3 precursor emission processes to nighttime and offering preferential refueling at night. However, the effectiveness of these policies remains unverified, and their impact on the O3 generation process requires further elucidation. In this study, we utilized a regional climate and air quality model (WRF-Chem, v4.5) to test three scenarios aimed at exploring the impact of diurnal industry emission variation of O3 precursors on O3 formation. Significant O3 variations were observed mainly in urban areas. Shifting volatile organic compounds (VOCs) to nighttime have slight decreased daytime O3 levels while moving nitrogen oxides (NOx) to nighttime elevates O3 levels. Simultaneously moving both to nighttime showed combined effects. Process analysis indicates that the diurnal variation in O3 was mainly attributed to chemical process and vertical mixing in urban areas, while advection becomes more important in non-urban areas, contributing to the changes in O3 and O3 precursors levels through regional transportation. Further photochemical analysis reveals that the O3 photochemical production in urban areas was affected by reduced daytime O3 precursors emissions. Specifically, decreasing VOCs lowered the daytime O3 production by reducing the ROx radicals (ROx = HO + HO˙2 + RO˙2), whereas decreasing NOx promoted the daytime O3 production by weakening ROx radical loss. Our results demonstrate that diurnal regulation of O3 precursors will disrupt the ROx radical and O3 formation in local areas, resulting in a change in O3 concentration and atmospheric oxidation capacity, which should be considered in formulating new relevant policies.

3.
Sci Total Environ ; : 172732, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663609

RESUMO

East Asian continental outflows with PM2.5, O3, and other species may determine the baseline conditions and affect the air quality in downwind areas via long-range transport (LRT). To gain insight into the impact and spatiotemporal characteristics of airborne pollutants in East Asian continental outflows, a versatile multicopter drone sounding platform was used to simultaneously observe PM2.5, O3, CO2, and meteorological variables (temperature, specific humidity, pressure, and wind vector) above the northern tip of Taiwan, Cape Fuiguei, which often encounters continental outflows during winter monsoon periods. By coordinating hourly high-spatial-resolution profiles provided by drone soundings, WRF/CMAQ model air quality predictions, HYSPLIT-simulated backward trajectories, and MERRA-2 reanalysis data, we analyzed two prominent phenomena of airborne pollutants in continental outflows to better understand their physical/chemical characteristics. First, we found that pollutants were well mixed within a sounding height of 500 m when continental outflows passed through and completely enveloped Cape Fuiguei. Eddies induced by significant fluctuations in wind speeds coupled with minimal temperature inversion and LRT facilitated vertical mixing, possibly resulting in high homogeneity of pollutants within the outflow layer. Second, the drone soundings indicated exceptionally high O3 concentrations (70-100 ppbv) but relatively low concentrations of PM2.5 (10-20 µg/m3), CO2 (420-425 ppmv), and VOCs in some air masses. The low levels of PM2.5, CO2, and VOCs ruled out photochemistry as the cause of the formation of high-level O3. Further coordination of spatiotemporal data with air mass trajectories and O3 cross sections provided by MERRA-2 suggested that the high O3 concentrations could be attributed to stratospheric intrusion and advection via continental outflows. High-level O3 concentrations persisted in the lower troposphere, even reaching the surface, suggesting that stratospheric intrusion O3 may be involved in the rising trend in O3 concentrations in parts of East Asia in recent years in addition to surface photochemical factors.

4.
Front Plant Sci ; 15: 1393905, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665368

RESUMO

Due to its high efficacy as a wide-spectrum disinfectant and its potential for the degradation of pollutants and pesticides, ozone has broad application prospects in agricultural production. In this study, micro/nano bubble technology was applied to achieve a saturation state of bubble nutrient solution, including micro-nano oxygen (O2 group) and micro-nano ozone (O3 group) bubble nutrient solutions. The effects of these solutions on lettuce physiological indices as well as changes in the microbial community within the rhizosphere substrate were studied. The application of micro/nano (O2 and O3) bubble nutrient solutions to substrate-cultured lettuce plants increased the amount of dissolved oxygen in the nutrient solution, increased the lettuce yield, and elevated the net photosynthetic rate, conductance of H2O and intercellular carbon dioxide concentration of lettuce plants. Diversity analysis of the rhizosphere microbial community revealed that both the abundance and diversity of bacterial and fungal communities in the substrate increased after plant cultivation and decreased following treatment with micro/nanobubble nutrient solutions. RDA results showed that the microbial community in the S group was positively associated with EC, that in the CK and O2 groups exhibited a positive correlation with SC, and that in the O3 group displayed a positive correlation with CAT and POD. Overall, the implementation of micro/nanobubble generation technology in soilless substrates can effectively increase the lettuce growth and yield, and O3 had a more pronounced effect on lettuce yield and quality and the microbial community structure in the substrate than O2. Our study would provide a reference and theoretical basis for developing sustainable and green technology for promoting lettuce production and can be a promising alternative to conventional methods for improving crop yields.

5.
Environ Res ; 252(Pt 2): 118962, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38642637

RESUMO

BACKGROUND: The association between long-term exposure to ozone (O3) and adult-onset asthma (AOA) remains inconclusive, and analysis of causality is lacking. OBJECTIVES: To examine the causal association between long-term O3 exposure and AOA. METHODS: A prospective cohort study of 362,098 participants was conducted using the UK Biobank study. Incident cases of AOA were identified using health administrative data of the National Health Services. O3 exposure at participants' residential addresses was estimated by a spatio-temporal model. Instrumental variable (IV) modelling was used to analyze the causal association between O3 exposure and AOA, by incorporating wind speed and planetary boundary layer height as IVs into time-dependent Cox model. Negative control outcome (accidental injury) was also used to additionally evaluate unmeasured confounding. RESULTS: During a mean follow-up of 11.38 years, a total of 10,973 incident AOA cases were identified. A U-shaped concentration-response relationship was observed between O3 exposure and AOA in the traditional Cox models with HR of 0.916 (95% CI: 0.888, 0.945) for O3 at low levels (<38.17 ppb), and 1.204 (95% CI: 1.168, 1.242) for O3 at high levels (≥38.17 ppb). However, in the IV analysis we only found a statistically significant association between high-level O3 exposure and AOA risk, but not for low-level O3 exposure. No significant associations between O3 exposure and accidental injury were observed. CONCLUSION: Our findings suggest a potential causal relationship between long-term exposure to high-level ambient O3 and increased risks of AOA.

6.
Heliyon ; 10(8): e29068, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38660250

RESUMO

Hydrogen sulfide (H2S) is known as a harmful pollutant for the environment and human health, and its emission control is a high priority. Non-thermal plasma is an effective technology in this field. In this study, for the first time, the performance of direct and indirect H2S plasma conversion methods was compared, optimized, and modeled with the CCD method. H2S was diluted in zero air, and the study investigated the effect of discharge power, relative humidity, total flow rate, initial H2S concentration, and their interactions. ANOVA results showed that the models for H2S conversion efficiency and energy yield were significant and efficient. The direct method achieved a maximum conversion efficiency of 56 % and energy yield of 3.43 g/kWh, while the indirect method produced 68 % conversion efficiency and 1.59 g/kWh energy yield. According to the process optimization results, the direct conversion method is more optimal than the indirect conversion method due to the presence of active species and high-energy electrons in the plasma treatment, and it is a better choice if there are suitable working conditions.

7.
Biology (Basel) ; 13(4)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38666844

RESUMO

An excess of ozone (O3) is currently stressing plant ecosystems and may negatively affect the nutrient use of plants. Plants may modify leaf turnover rates and nutrient allocation at the organ level to counteract O3 damage. We investigated leaf turnover rate and allocation of primary (C, N, P, K) and secondary macronutrients (Ca, S, Mg) under various O3 treatments (ambient concentration, AA, with a daily hourly average of 35 ppb; 1.5 × AA; 2.0 × AA) and fertilization levels (N: 0 and 80 kg N ha-1 y-1; P: 0 and 80 kg N ha-1 y-1) in an O3-sensitive poplar clone (Oxford: Populus maximowiczii Henry × P. berolinensis Dippel) in a Free-Air Controlled Exposure (FACE) experiment. The results indicated that both fertilization and O3 had a significant impact on the nutrient content. Specifically, fertilization and O3 increased foliar C and N contents (+5.8% and +34.2%, respectively) and root Ca and Mg contents (+46.3% and +70.2%, respectively). Plants are known to increase the content of certain elements to mitigate the damage caused by high levels of O3. The leaf turnover rate was accelerated as a result of increased O3 exposure, indicating that O3 plays a main role in influencing this physiological parameter. A PCA result showed that O3 fumigation affected the overall allocation of primary and secondary elements depending on the organ (leaves, stems, roots). As a conclusion, such different patterns of element allocation in plant leaves in response to elevated O3 levels can have significant ecological implications.

8.
Toxics ; 12(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668466

RESUMO

In recent years, commercial air transport has increased considerably. However, the compositions and source profiles of volatile organic compounds (VOCs) emitted from aircraft are still not clear. In this study, the characteristics of VOCs (including oxygenated VOCs (OVOCs)) emitted from airport sources were measured at Shenzhen Bao'an International Airport. The results showed that the compositions and proportions of VOC species showed significant differences as the aircraft operating state changed. OVOCs were the dominant species and accounted for 63.17%, 58.44%, and 51.60% of the total VOC mass concentration during the taxiing, approach, and take-off stages. Propionaldehyde and acetone were the main OVOCs, and dichloromethane and 1,2-dichloroethane were the main halohydrocarbons. Propane had the highest proportion among all alkanes, while toluene and benzene were the predominant aromatic hydrocarbons. Compared with the source profiles of VOCs from construction machinery, the proportions of halogenated hydrocarbons and alkanes emitted from aircraft were significantly higher, as were those of propionaldehyde and acetone. OVOCs were still the dominant VOC species in aircraft emissions, and their calculated ozone formation potential (OFP) was much higher than that of other VOC species at all stages of aircraft operations. Acetone, propionaldehyde, formaldehyde, acetaldehyde, and ethylene were the greatest contributors to ozone production. This study comprehensively measured the distribution characteristics of VOCs, and its results will aid in the construction of a source profile inventory of VOCs emitted from aircraft sources in real atmospheric environments.

9.
Disabil Rehabil ; : 1-7, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644616

RESUMO

PURPOSE: Trapeziometacarpal osteoarthritis (TMC-OA) is a prevalent hand disorder affecting a growing number of people worldwide. While a multidisciplinary approach might provide additional advantages, the analgesic and anti-inflammatory role of intra-articular oxygen-ozone (O2O3) injections combined with physical therapy is still unknown. To assess the impact of a multimodal therapeutic approach combining O2O3 injections with physical therapy in patients with TMC-OA. MATERIALS AND METHODS: A prospective open-label study conducted in the Physical and Rehabilitation Medicine Unit of the "Renato Dulbecco" University Hospital of Catanzaro. We assessed patients with TMC-OA who had not responded to standard medical therapy. Participants received O2O3 therapy and targeted physical therapy for 4 weeks. Pain relief, muscle strength, and physical functioning were assessed at baseline and after 4, 12 and 24 weeks (respectively T0, T1, T2, and T3). RESULTS: Seventeen patients with a mean age of 67.1 ± 6.1 years were included in the study. Short-term improvements in pain intensity were observed (T0: 6.221 ± 1.514; T1: 3.172 ± 1.1451; p < .001) and were maintained over a 24-week follow-up period (T0: 6.221 ± 1.514; T3: 4.393 ± 1.438; p: 0.006). Significant changes were reported also in terms of muscle strength and physical functioning. O2O3 therapy was well-tolerated with no adverse effects. CONCLUSIONS: A combination of O2O3 injections and physical therapy might be considered in patients with TMC-OA. Further investigation is warranted to assess the effectiveness of O2O3 therapy in managing TMC-OA.


The addition of intra-articular trapeziometacarpal O2O3 injections to physical therapy is safe and reliable for thumb osteoarthritisO2O3 injection could be considered a second-line mini-invasive approach option when simple analgesic and non-pharmacologic interventions have failed, and surgical treatment is not yet indicatedO2O3 injections in combination with physical therapy may provide benefits in terms of pain relief in patients with TMC joint OA in whom previous conventional medical therapy has been unsuccessful.

10.
Water Res ; 255: 121346, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569355

RESUMO

This study investigated the elimination of pharmaceuticals, corrosion inhibitors, x-ray contrast media and perfluorinated compounds from reverse osmosis concentrates during ozonation and UV/persulfate processes. Second-order rate constants for the reactions of candesartan, irbesartan, methyl-benzotriazole, and chloro­benzotriazole with sulfate radical (SO4·-) were determined for the first time. Experiments were conducted in buffered pure water, in buffered water added with the matrix substituents chloride, carbonate, NOM, and reverse osmosis concentrate with spiked micropollutants (MP). UV/persulfate eliminated all MP to a higher extent than ozonation in RO concentrates due to the higher yield of oxidative species and photolytic degradation. Compounds with electron-rich moieties such as carbamazepine, diclofenac, metoprolol, and sulfamethoxazole were completely eliminated with small ozone doses (< 0.5 mg O3 / mg DOC) and with a small fluence (< 5000 J m-2) in UV/persulfate processes. Photosensitive compounds with high reactivity towards hydroxyl radicals (·OH) and SO4·- like the x-ray contrast media Iopamidol, Iohexol, and Amidotrizoic acid were successfully eliminated with a reasonable fluence in UV/persulfate, whereas these compounds persist in ozonation at common ozone dosages. However, much higher fluences and ozone dosages were required for the least reactive compounds like the class of benzotriazoles. Comparing the application of both oxidative processes to the RO concentrate, ozonation has the disadvantage of forming bromate. The energy input of both processes strongly depends on the target compounds to be eliminated. For the elimination of compounds such as sulfamethoxazole, ozonation is a feasible technique, whereas UV/persulfate is better suited for the elimination of recalcitrant compounds such as x-ray contrast media. In general, oxidative process treatment of RO concentrate could be applied to partly abate micropollutants before discharge.

11.
Environ Sci Technol ; 58(16): 6988-6997, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38592860

RESUMO

In 2022, many Chinese cities experienced lockdowns and heatwaves. We analyzed ground and satellite data using machine learning to elucidate chemical and meteorological drivers of changes in O3 pollution in 27 major Chinese cities during lockdowns. We found that there was an increase in O3 concentrations in 23 out of 27 cities compared with the corresponding period in 2021. Random forest modeling indicates that emission reductions in transportation and other sectors, as well as the changes in meteorology, increased the level of O3 in most cities. In cities with over 80% transportation reductions and temperature fluctuations within -2 to 2 °C, the increases in O3 concentrations were mainly attributable to reductions in nitrogen oxide (NOx) emissions. In cities that experienced heatwaves and droughts, increases in the O3 concentrations were primarily driven by increases in temperature and volatile organic compound (VOC) emissions, and reductions in NOx concentrations from ground transport were offset by increases in emissions from coal-fired power generation. Despite 3-99% reduction in passenger volume, most cities remained VOC-limited during lockdowns. These findings demonstrate that to alleviate urban O3 pollution, it will be necessary to further reduce industrial emissions along with transportation sources and to take into account the climate penalty and the impact of heatwaves on O3 pollution.

12.
Environ Pollut ; 349: 123932, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38583796

RESUMO

By analyzing environmental and meteorological monitoring data over recent years of 2015-2022, the Twain-Hu Basin (THB) in central China was identified as a regional O3 pollution center over China with the highest increasing trend at 1.10 %⸱yr-1 in interannual variations of O3 concentrations with deteriorating O3 pollution over recent years. We explored the spatiotemporal variations in O3 pollution in the THB with ozone suppression (OS) under high air temperature over metropolitan, small urban, and mountainous areas. The bipolarized interannual trends in interannual O3 variations in urban and mountainous areas over central China were characterized with the increasing and decreasing 90th percentiles of the daily maximum 8-h (MDA8-90) O3 concentrations respectively in polluted urban areas and clean mountainous areas over recent eight years. The changes of the near-surface O3 concentrations with air temperature exhibited the inflection points of OS from increasing to decreasing O3 at air temperature of 30.5 °C in mountainous areas, 32.5 °C in small urban areas, and 34.5 °C in metropolitan areas, and the intensity of OS was estimated in the ranking with mountainous areas (-2.30 µg⸱m-3⸱°C-1) > small urban areas (-1.96 µg⸱m-3⸱°C-1) > metropolitan areas (-1.54 µg⸱m-3⸱°C-1), indicating that the OS was more significant over the lower-O3 mountainous areas. This study has implications for understanding O3 pollution variations with the meteorological drivers.

13.
Huan Jing Ke Xue ; 45(5): 2507-2515, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629516

RESUMO

To study the long-term variation in ozone (O3) pollution in Sichuan Basin,the spatiaotemporal distribution of O3 concentrations during 2017 to 2020 was analyzed using ground-level O3 concentration data and meteorological observation data from 18 cities in the basin. The dominant meteorological factors affecting the variation in O3 concentration were screened out,and a prediction model between meteorological factors and O3 concentration was constructed based on a random forest model. Finally,a prediction analysis of O3 pollution in the Sichuan Basin urban agglomeration during 2020 was carried out. The results showed that:① O3 concentrations displayed a fluctuating trend during the period from 2017 to 2020,with a downward trend in 2019 and a rebound in 2020. ② The fluctuating trend of O3 concentration was significantly influenced by relative humidity,daily maximum temperature,and sunshine hours,whereas wind speed,air pressure,and precipitation had less impact. The linear relationships between meteorological factors were different. Air pressure was negatively correlated with other meteorological factors,whereas the remaining meteorological factors had a positive correlation. ③ The goodness of fit statistics (R2) between the predicted and actual values of the O3 prediction model constructed based on random forest demonstrated a strong predictive performance and ability to accurately forecast the long-term daily variations in O3 concentration. The random forest O3 prediction model exhibited excellent stability and generalization capability. ④ The prediction analysis of O3 concentrations in 18 cities in the basin showed that the explanation rate of variables in the prediction model reached over 80% in all cities (except Ya'an),indicating that the random forest model predicted the trend of O3 concentration accurately.

14.
Huan Jing Ke Xue ; 45(5): 2613-2621, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629525

RESUMO

This study selected five typical types of chemical industry volatile organic compounds (VOCs) emission characteristics in China for analysis. The results from 70 source samples showed that alkanes were the dominant VOCs category from synthetic material industry sources, petrochemical industry sources, and coating industry sources (accounting for 43%, 63%, and 68%, respectively); olefins were the main VOCs category from the daily supplies chemical industry (46%); and halogenated hydrocarbons were the dominate VOCs category from specialty chemicals industry account source emissions (43%). Additionally, the machine learning method was applied in this study to analyze the marker components of the above industries. The results showed that decane and tetrahydrofuran were the source markers of the synthetic material industry; n-butanol and toluene were the markers of the daily supplies industry source; 1,2,3-trimethylbenzene and 1,3,5-trimethylbenzene were the markers of the petrochemical industry source; propylene and 3-methyl pentane were the source markers of the coating industry; and P-Xylene and cumene were the markers of the specialty chemicals industry source. The maximum incremental reactivity method (MIR) was used to estimate the ozone formation potential (OFP) of different VOCs-sources. The calculation results showed that when considering per unit TVOCs concentration emissions, the contribution to the ozone generation potential was in the order of the daily supplies chemical industry, specialty chemical industry, petrochemical industry, synthetic material industry, and coating industry. Therefore, we suggest that more attention should be paid to the key active species emitted by various industry sources rather than only the total amount of VOCs emissions in future ozone prevention and control efforts.

15.
Environ Sci Technol ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629952

RESUMO

Ozone (O3) profiles are crucial for comprehending the intricate interplay among O3 sources, sinks, and transport. However, conventional O3 monitoring approaches often suffer from limitations such as low spatiotemporal resolution, high cost, and cumbersome procedures. Here, we propose a novel approach that combines multiaxis differential optical absorption spectroscopy (MAX-DOAS) and machine learning (ML) technology. This approach allows the retrieval of O3 profiles with exceptionally high temporal resolution at the minute level and vertical resolution reaching the hundred-meter scale. The ML models are trained using parameters obtained from radiative transfer modeling, MAX-DOAS observations, and a reanalysis data set. To enhance the accuracy of retrieving the aqueous phosphorus from O3, we employ a stacking approach in constructing ML models. The retrieved MAX-DOAS O3 profiles are compared to data from an in situ instrument, lidar, and satellite observation, demonstrating a high level of consistency. The total error of this approach is estimated to be within 25%. On balance, this study is the first ground-based passive remote sensing of high time-height-resolved O3 distribution from ground to the stratopause (0-60 km). It opens up new avenues for enhancing our understanding of the dynamics of O3 in atmospheric environments. Moreover, the cost-effective and portable MAX-DOAS combined with this versatile profiling approach enables the potential for stereoscopic observations of various trace gases across multiple platforms.

16.
Sci Total Environ ; 928: 172336, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38614350

RESUMO

Nitrous acid (HONO) is an important precursor of the hydroxyl radical (OH) and plays a vital role in atmospheric photochemistry and nitrogen cycling. Soil emissions have been considered as a potential source of HONO. Lately, the HONO emission via soil-atmosphere exchange (ESA-exchange) from soil nitrite has been validated and quantified through chamber experiments, but has not been assessed in the real atmosphere. We coupled ESA-exchange and the other seven potential sources of HONO (i.e., traffic, indoor and soil bacterial emissions, heterogeneous reactions on ground and aerosol surfaces, nitrate photolysis, and acid displacement) into the Weather Research and Forecasting model with Chemistry (WRF-Chem), and found that diurnal variations of the soil emission flux at the Wangdu site were well simulated. During the non-fertilization period, ESA-exchange contributed ∼28 % and âˆ¼35 % of nighttime and daytime HONO, respectively, and enhanced the net ozone (O3) production rate by ∼8 % across the North China Plain (NCP). During the preintensive/intensive fertilization period, the maximum ESA-Exchange contributions attained ∼70 %/83 % of simulated HONO in the afternoon across the NCP, definitely asserting its dominance in HONO production. ESA-Exchange enhanced the OH production rate via HONO photolysis by ∼3.5/7.0 times, and exhibited an increase rate of ∼13 %/20 % in the net O3 production rate across the NCP. The total enhanced O3 due to the eight potential HONO sources ranged from ∼2 to 20 ppb, and ESA-exchange produced O3 enhancements of ∼1 to 6 ppb over the three periods. Remarkably, the average contribution of ESA-exchange to the total O3 enhancements remained ∼30 %. This study suggests that ESA-exchange should be included in three-dimensional chemical transport models and more field measurements of soil HONO emission fluxes and soil nitrite levels are urgently required.

17.
J Infect Dev Ctries ; 18(3): 473-479, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38635625

RESUMO

INTRODUCTION: Candida albicans and Aspergillus fumigatus are two important agents of Healthcare-associated infections. This study aimed to evaluate the antifungal activity of ozone (O3) gas produced by two commercial devices against cultures of these two species. METHODOLOGY: Sterile plastic plates were inoculated with C. albicans and A. fumigatus and placed on a countertop at three distances (30 cm, 1 m, and 2 m) and three positions in relation to the wall (near, middle, and away), considering the source of O3. Plates were exposed to O3 for one hour and incubated. After incubation, the counting of colony-forming units was performed. As a control, an inoculated plate was incubated, without being exposed to O3. Tests were carried out with two different devices (namely, Mod.I and Mod.II), with the air conditioner on and off, in triplicate. RESULTS: Both devices showed antifungal activity. Mod. I presented better results, due to a higher flow rate. The best activity was on plates at 30 cm, middle position. Contrarily, on plates at 2m, near the wall, the inhibition activity was lower. The best results were obtained with the air conditioner off. Candida albicans was more sensitive to O3 than A. fumigatus. CONCLUSIONS: This method of decontamination by O3 gas shows potential due to its fast and easy execution. The establishment of new protocols for hygiene and hospital disinfection using this approach should be considered, which may reduce environmental contamination by fungi and, consequently, the burden of fungal infections.


Assuntos
Candida albicans , Micoses , Aspergillus fumigatus , Antifúngicos/farmacologia , Testes de Sensibilidade Microbiana
18.
Skin Res Technol ; 30(4): e13675, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558144

RESUMO

AIMS: This research assessed the safety of aqueous ozone (AO) on human skin after multiple exposures for up to 40 hours. METHODS AND RESULTS: Full thickness recombinant human skin (EpiDerm FT, EFT-400) was exposed to AO for 7 seconds per minute for the first 6 minutes of each hour, repeated hourly over four time periods (4, 10, 20 and 40 hours). An MTT assay assessed viability of skin cells after exposure, compared to incubator control, negative control and vehicle control (distilled water). No significant difference in tissue viability was found between the AO condition and any of the control conditions through 20 hours of exposures. At 40 hours of exposure, tissue viability was lower in the AO group when compared with negative control (p = 0.030) but not the other controls. CONCLUSIONS: The current study supports further consideration of repeated application of AO on human skin, such as for hand hygiene. IMPACT STATEMENT: The present research is the first well-controlled in vitro study assessing the cytotoxicity of repeated exposures of AO on a full-thickness human skin model. This information helps to inform the evaluation of AO as a potential alternative for hand and wound antisepsis.


Assuntos
Higiene das Mãos , Ozônio , Humanos , Ozônio/toxicidade , Pele , Epiderme , Água
19.
Clin Case Rep ; 12(4): e8728, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38562577

RESUMO

Key Clinical Message: A high risk diabetic foot ulcer is treated by ozone therapy and collagen powder. The goal of this study was to report a high risk case, treated by ozone therapy, and collagen powder. Ozone therapy and collagen powder can improve healing process of diabetic foot ulcers. Abstract: This case report presents a successful nonsurgical outpatient approach for managing a high-risk diabetic foot ulcer with tendon exposure in an older adult with uncontrolled diabetes mellitus and severe heart failure. Due to the patient's comorbidities, surgical intervention was not an option, leading to the utilization of ozone therapy, collagen powder, and Phenytoin ointment. The significance of this case lies in the treatment of a high-risk foot ulcer through a nonsurgical approach, considering the patient's uncontrolled diabetes and severe heart failure. Diabetic foot ulcers (DFUs) are debilitating and life-threatening complications, often resulting in amputations, socio-psychological burdens, and lifestyle changes. Conventional treatment methods have shown limited success, necessitating the exploration of new and innovative approaches. The use of ozone therapy has emerged as a potential treatment, but its safety and efficacy in DFUs require further investigation. The positive outcomes observed in this case report suggest that ozone therapy may be a viable option for treating DFUs, and further studies are recommended to evaluate its effectiveness.

20.
Water Res ; 256: 121608, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38657310

RESUMO

The application of ozone (O3) disinfection has been hindered by its low solubility in water and the formation of disinfection by-products (DBPs). In this study, capacitive disinfection is applied as a pre-treatment for O3 oxidation, in which manganese dioxide with a rambutan-like hollow spherical structure is used as the electrode to increase the charge density on the electrode surface. When a voltage is applied, the negative-charged microbes are attracted to the electrodes and killed by electrical interactions. The contact between microbes and capacitive electrodes leads to changes in cell permeability and burst of reactive oxygen species, thereby promoting the diffusion of O3 into the cells. After O3 penetrates the cell membrane, it can directly attack the cytoplasmic constituents, accelerating fatal and irreversible damage to pathogens. As a result, the performance of the capacitance-O3 process is proved better than the direct sum of the two individual process efficiencies. The design of capacitance-O3 system is beneficial to reduce the ozone dosage and DBPs with a broader inactivation spectrum, which is conducive to the application of ozone in primary water disinfection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...